Contemporary Urologic Minilaparoscopy: Indications, Techniques, and Surgical Outcomes in a Multi-institutional European Cohort

Abstract

**Objectives:** To provide an analytical overview of contemporary indications, techniques, and outcomes of urologic minilaparoscopy (ML) in multiple European centers.

**Methods:** Data of patients who had undergone a minilaparoscopic urologic procedure at nine European institutions between 2009 and 2012 were retrospectively gathered. Surgical procedures were classified as upper or lower urinary tract and as ablative or extirpative and reconstructive. The main surgical outcome parameters were analyzed and relevant operative data related to the surgical technique were recorded.

**Results:** Overall, 192 patients (mean age 45.25 ± 17.8 years) were included in the analysis. Most of them were nonobese (mean body mass index [BMI] 24.7 ± 3.6 kg/m²) at low estimated surgical risk (mean American Society of Anesthesiologists [ASA] 1.69 ± 0.68). Indications for surgery were mostly nononcologic (132 cases, 68.8%). Most of the procedures were done in the upper urinary tract (133 cases, 69.2%) and were mostly with a reconstructive intent (109 cases, 56.7%). Overall operative time was 132.7 ± 52.3 minutes with an estimated blood loss of 60.9 ± 47.6 mL while the mean hospital stay was 5 ± 2.1 days. Most of the postoperative complications were low Clavien grade (1 and 2), with only one (0.5%) grade 3 and one (0.5%) grade 4 complications recorded.

**Conclusions:** A broad range of common procedures can be safely and effectively performed with ML techniques. By duplicating the principles of standard laparoscopy, but potentially offering less surgical scar and trauma, ML can be regarded as a viable option when looking for a virtually “scarless” surgery.

Introduction

The idea of performing surgical procedures with no scar has gained attention in the urological community over the last 5 years. Based on this concept, novel surgical approaches, such as natural orifice translumenal endoscopic surgery (NOTES) and laparoendoscopic single-site surgery (LESS), have been explored with the ultimate aim of minimizing the surgical morbidity and fostering patient recovery. At this time, only hybrid NOTES or NOTES-assisted laparoscopic techniques seem to be ready for immediate implementation in clinical practice. Nevertheless, the claimed advantages of LESS over the traditional laparoscopic approach remain to be fully demonstrated and its disadvantages are widely recognized. Moreover, although feasible, pure LESS remains a technical challenge for the surgeon, so

---

1Department of Urology, San Luigi Gonzaga Hospital, Orbassano, Italy.
2Urology Unit, Second University of Naples, Naples, Italy.
3Center for Laparoscopic and Robotic Surgery, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio.
4Department of Urology, Magna Graecia University, Catanzaro, Italy.
5Department of Urology, Braga Hospital, Braga, Portugal.
6Department of Urology, Aldo Moro University, Bari, Italy.
7Department of Urology, Policlinico-Vittorio Emanuele, Catania, Italy.
8Department of Urology, University of Eastern Piedmont, Maggiore Della Carità Hospital, Novara, Italy.
9Department of Urology, SLK Kliniken Heilbronn, Heilbronn, Germany.
10Department of Urology, San Bassiano Hospital, Bassano Del Grappa, Italy.
11Department of Urology and Minimal Invasive Surgery, Romolo Hospital, Crotone, Italy.
12Department of Urology, Autonoma University of Barcelona, Fundacio Puigvert, Barcelona, Spain.
that a mix of techniques could be the key for its implementation.\(^5\)

Recently, minilaparoscopy (ML) has been rediscovered in an attempt to reduce the trauma on the abdominal wall derived from standard laparoscopic access, improving cosmetic outcome and recovery.\(^7\) This rediscovery has been fuelled by the availability of more reliable instrumentation and by the fact that ML allows minimal abdominal scar, meanwhile preserving the key principle of triangulation.

Over the last few years, many minilaparoscopic procedures have been successfully performed in several surgical disciplines.\(^8,9\) In urology, evidence supporting ML has been limited to small case series or case–control studies from selected centers with laparoscopic expertise.\(^10–12\) Thus, more robust analyses of larger samples are desirable to corroborate positive findings from early series.

This study was initiated as a collaborative effort among institutions pioneering the development of urologic ML, with the purpose of providing an analytical overview of indications, techniques, and outcomes of this technique in contemporary practice.

**Patients and Methods**

**Study design**

Data of patients who had undergone a minilaparoscopic urologic procedure at nine European institutions between 2009 and 2012 were retrospectively collected and gathered into a standardized datasheet. All patients had consented specifically and each group had performed the procedures according to its own protocols, inclusion criteria, and techniques.

**Outcome analysis**

Demographic data included age, gender, body mass index (BMI, past history of previous abdominal/pelvic surgery, the American Society of Anesthesiologists (ASA) score, and indications for ML.

Surgical procedures were classified as upper or lower urinary tract and as ablative or extirpative and reconstructive.

The main surgical outcome parameters were analyzed, including operative time, estimated blood loss, perioperative urinary tract, and as ablative or extirpative and reconstructive.

Instruments and surgical techniques

In all cases the 3-mm minilaparoscopic set from Karl Storz\(^6\) (Tuttlingen, Germany) was used. A full range of instruments are available, including graspers, dissectors, scissors, suction-irrigation cannulas, and needle holders. Thus, a completely reusable set with 36-cm-long instruments, as well as shorter (20 and 30 cm long) 3- and 2-mm instruments. The trocars are rigid cannulas with a metal conical-tipped trocar and silicone leaflet valves to help in maintaining pneumoperitoneum (Fig. 1). A variety of port configurations and combinations were adopted depending on the procedure.

For radical prostatectomy, the patient was placed in the Trendelenburg supine position (Fig. 2a). A 15-mm skin incision was made laterally to the umbilical scar to create a preperitoneal space by introducing a dissecting balloon trocar. After that, the balloon trocar was replaced by a 12-mm optical trocar. Two 3.5-mm trocars were positioned medially to the anterior superior iliac spine, bilaterally. One 5-mm trocar was placed ~3 fingerbreadths medially to the left anterior superior iliac spine, whereas another 3.5-mm trocar in the right pararectal line between the optical trocar and the previously placed right 3.5-mm trocar.

For the pyeloplasty, both the transperitoneal (72 cases, 68.3%) and retroperitoneal approaches (34 cases, 31.7%) were used. The Anderson-Hynes technique was mostly adopted (85 cases, 79.5%), whereas Foley Y-V (20 cases, 18.7%) or Fenger (2 cases, 1.8%) techniques were selectively used. For the transperitoneal approach (Fig. 2b), the first 3.5-mm camera port was placed 2 cm laterally to the umbilicus, on the basis of patient body habitus. Then, under direct vision, another two 3.5-mm trocars were placed along the mid-clavicular line, right or left depending on the side of the procedure. A fourth 3.5-mm trocar, placed just below the xiphoid, was used as a liver retractor in case of right-sided procedures.\(^10\) For the retroperitoneal approach (Fig. 2c), a retroperitoneal tunnel was created through a 6 mm skin incision below the inferior edge of the 12th rib. To develop the retroperitoneal space, a 6-mm homemade dissecting balloon trocar was used. Then, two 3.5-mm working trocars were placed under endoscopic control to achieve triangulation.\(^11\)

For the nephrectomy, a transperitoneal approach was chosen for all the cases (Fig. 2d). A 5-mm optical trocar was introduced under direct vision through the umbilicus.\(^12\) Three to four 3.5-mm trocars were then introduced under direct vision along the left pararectal line in a linear fashion. The camera port was switched to a 3-mm laparoscope and introduced through the most cephalic 3.5-mm trocar. Finally, the fourth 3-mm trocar was normally placed at the antral line at the tip of the 12th rib to optimize retraction.

For the adrenalectomy, a lateral retroperitoneal approach was adopted in all the cases. Immediately below the 12th rib, a dissecting balloon trocar was inserted at the level of the inferior lumbar (Petit) triangle to develop a retroperitoneal space. After removal of the balloon trocar, a 3.5-mm optical trocar was inserted and fixed with a silk suture. Under laparoscopic control, remaining ports were mostly nononcologic (132 cases, 68.8%). Most of the procedures were done in the upper urinary tract (133 cases, 69.2%) and were mostly with a reconstructive intent (109 cases, 56.7%).
introduced, including two 3.5-mm trocars inserted below (along the lateral border of the sacrospinalis muscle) and anteriorly (along the anterior axillary line) to the 12th rib, respectively, so that the three ports formed a line corresponding to a subcostal incision.

Surgical outcomes

The overall operative time was 132.7 ± 52.3 minutes with an estimated blood loss of 60.9 ± 47.6 mL, while the mean hospital stay was 5 ± 2.1 days. In Table 2 the specific outcomes for the most commonly performed procedures are detailed.

A limited number of perioperative adverse events were observed in the present series. Only Satava grade 1 intraoperative complications were recorded (8.3% of all the cases). These were represented by substitution of a 3-mm trocar with 5-mm or two 3-mm trocars with 5-mm as well as unplanned additions of extra 3-mm ports or 5-mm ports.

Overall, 58 postoperative complications were observed, accounting for a 30.2% complication rate. Most of them were Clavien grade 1 \( (n=36; 18.7\%); \) fever, UTI, and respiratory infections), with only one (0.5%) grade 3 and one (0.5%) grade 4 complication recorded.

Discussion

Herein we reported the largest contemporary series of minilaparoscopic procedures in urology, detailing indications, outcomes, and technical nuances.
The idea of further reducing the minimal invasiveness of standard laparoscopy is not new. In the early 1990s this was proposed and experimented in different surgical specialties, including urology. However, it did not become popular because instruments were deemed to be too flimsy, reliable scopes were not available, and the surgical techniques themselves were not optimized. Ultimately, at that time ML seemed to have no significant advantages and did not progress as initially imagined.

In parallel with the recent development of potentially “scarless” surgical techniques, such as NOTES and LESS, there has been a renewed interest of the surgical community toward a rediscovery of ML. This interest has been driven by two main reasons: the boosting of manufacturers that leads to -

**FIG. 1.** Storz® minilaparoscopy instruments: (A) 3.9-mm trocars (compared with 5- and 10-mm ones); (B) 3-mm instruments introduced through the 3.9-mm trocar; (C) tip of bipolar 3-mm forceps; and (D) 2-mm instruments (compared with the 3-mm ones).

**FIG. 2.** Port configuration for different minilaparoscopic procedures: (a) radical prostatectomy; (b) transperitoneal pyeloplasty; (c) retroperitoneoscopic pyeloplasty; and (d) nephrectomy.
the availability of a new generation of purpose-built instrumenta-
tion,17 and the fact that ML seems to be ready for im-
mediate implementation as it is based on the same established
principles of standard laparoscopy.18

At present, many procedures have been performed and in
some cases the cosmetic benefit has also been demonstrated
with an objective assessment.1 In urology, however, small
case series and case–control studies have been reported so
far.10-12 To our knowledge, this is the first large cohort re-
porting the outcomes of contemporary ML and providing an
overview of the current applications in our surgical specialty.

When looking at the overall population of our study, pa-

tients were relatively young, nonobese, and at low estimated
surgical risk. Obese patients do not represent an optimal in-
dication for ML as smaller diameter instrument shafts bend
more easily; on the other side, patients with multiple adhe-

sions from previous surgery are less suitable too.

A large spectrum of the common urologic procedures for
both upper and lower urinary tract diseases have been per-
formed and shown to be feasible duplicating the principles of
standard laparoscopy. Not surprisingly, reconstructive pro-
cedures, which do not require an additional incision to extract
a surgical specimen, thus maximizing the benefits of the
minilaparoscopic approach, were the most common.

Pyeloplasty represented the most common indication and
was performed by using both transperitoneal and retroperi-
toneal approaches. Although the present series is devoid of
data about patient satisfaction and scar assessment, Fiori
and colleagues recently evaluated cosmetic outcomes in pa-
tients undergoing minilaparoscopic and standard pyeloplasty,
by administering 3 months postoperatively a standardized
questionnaire.19 The authors found that patients who under-
went the minilaparoscopic approach were significantly more
satisfied with their cosmetic results than those who received
standard laparoscopic pyeloplasty. Besides the comparison
between ML and standard laparoscopy, it also remains to be
determined the comparison between ML and LESS. In a re-
cent randomized trial on cholecystectomy, Lee and col-
leagues found LESS to be superior to ML in terms of
cosmetic outcome, but not about postoperative pain and an-
algiesic consumption.9

In a recent Cochrane meta-analysis of 13 trials comparing
minimmpor versus standard port laparoscopic cholecystec-
tomy, Gurusamy and colleagues observed that patients, in
whom elective miniport laparoscopic cholecystectomy was
completed successfully, had lower pain.19 These findings


corroborate our finding of a very low VAS recorded at discharge.

Extravipar surgeries were also performed in our series.
However, for radical prostatectomy, radical nephrectomy,
and adrenalectomy, a liberal use of standard (larger) trocars
and instruments is more likely. This can be explained by
the need of overcoming the current shortcoming of minilaparo-
soscopic instrumentation and minimizing the surgical risk.

Despite technological improvements obtained with the latest
generation of instruments, some drawbacks are still present.19

The quality of vision provided by the 3-mm scope is inferior in
terms of image resolution, clarity, and light transmitting ca-
pacity, in comparison to a 10-mm laparoscope. Moreover, in
case of bleeding, the illumination-induced light absorption
causes a substantial decrease in image quality. Clip applicators
are unavailable, and this is a clear limitation, in particular,
when an extirpative procedure is planned. The use of bipolar
can partially compensate for this shortcoming. The suction
irrigation cannula, due to its small diameter, has poor flow
characteristics and, in some cases, fails to maintain a bloodless
field. The evacuation of smoke can also be compromised by
the small caliber ports, especially when an instrument is
inserted.

Nomenclature for ML, as well as other scarless techniques,
has been recently summarized by Georgiou and colleagues.20

According to this nomenclature, minilaparoscopy implies the
use of 3- to 5-mm rigid instruments and telescopes, whereas
hybrid minilaparoscopy implies the use of larger ports
(10 mm).

Similar to what has been done for standard laparoscopy21
and for LESS,22 ML as well must be scrutinized for the risk
of perioperative adverse events. Adopting two standard-
ized reporting systems, the Satava and the Clavien Dindo,
our data suggested that ML is overall a safe technique,
despite this analysis, including the early experience of
participating centers. Intraoperative adverse events only
included the replacement of 3-mm trocars by 5-mm trocars
or the addition of extra ports (Satava grade 1), whereas no
conversion to open surgery was needed. The overall rate of
those events was 8.3%. Postoperative adverse events were
recorded in 30.2% of cases, most of them being low Clavien
grade (1 and 2).

When considering main perioperative outcomes, it can be
grossly estimated that some of the most commonly performed
procedures in the present series (e.g., pyeloplasty, nephrec-
tomy, adrenalectomy, and radical prostatectomy) compare

---

**Table 2. Surgical Outcomes for Most Frequently Performed Mini Laparoscopic Procedures**

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Case, n</th>
<th>ORT, min</th>
<th>EBL, mL</th>
<th>LOS, days</th>
<th>VAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyeloplasty</td>
<td>107</td>
<td>151.27 ± 52</td>
<td>55.42 ± 47.8</td>
<td>5.52 ± 2.49</td>
<td>0.59 ± 0.79</td>
</tr>
<tr>
<td>Nephrectomy</td>
<td>20</td>
<td>122.11 ± 41.7</td>
<td>52.50 ± 43.27</td>
<td>4.60 ± 2.11</td>
<td>1.10 ± 0.57</td>
</tr>
<tr>
<td>Adrenalectomy</td>
<td>37</td>
<td>102.78 ± 32.73</td>
<td>81.89 ± 38.7</td>
<td>4.75 ± 0.81</td>
<td>0.86 ± 0.76</td>
</tr>
<tr>
<td>Radical prostatectomy</td>
<td>13</td>
<td>114.23 ± 21.20</td>
<td>150.00 ± 32.3</td>
<td>3.69 ± 1.11</td>
<td>1.00 ± 0.21</td>
</tr>
</tbody>
</table>

Values expressed as mean ± SD.

1 Partial nephrectomy (n=2), renal cyst decortication (n=4), colposacropexy (n=2), and others (n=7) were also performed, but not analyzed for low number of cases.

2 Including partial (n=8).

EBL, estimated blood loss; LOS, length of stay; ORT, operative room time; PCs GS; VAS, visual analog score at discharge.
favorably with the reported series of their laparoscopic counterparts.23–26
Some important limitations of the present study need to be
mentioned. First, it is a retrospective analysis of prospectively
collected data, so that the assessment has been limited to
variables that were available with sufficient quality only. A
case control group was not considered and the follow-up is short.
Moreover, the surgical procedures were performed by sur-
gical teams with previous extensive laparoscopic back-
ground, so that transferring these findings in a different
setting should be done cautiously.

Conclusions
This study provides an overview of the recent evolution of
urologic ML in multiple European laparoscopic expertise
centers. A broad range of common procedures can be safely
and effectively performed with this newly rediscovered
technique, given the current availability of purpose-built in-
strumentation. By duplicating the principles of standard
laparoscopic surgery, ML can be regarded as a viable option when looking
for a virtually scarless surgery.

Disclosure Statement
No competing financial interests exist.

References
single-site and natural orifice transluminal endo-
sopic surgery in urology: A critical analysis of the
vaginal natural orifice transluminal endoscopic surgery-
assisted living donor nephrectomy: Is kidney vaginal
delivery the approach of the future? Eur Urol 2011;59:
1019–1025.
natural orifice transluminal endoscopic surgery-assisted
mini-laparoscopic nephrectomy: A step towards scarless
single-site surgery in urology: Worldwide multi-institutional
performed through a single incision: A systematic review of
6. Liatsikos E, Kyriazis I, Kalidonis P, Do M, Dietel A,
Stolzenburg JU. Pure single-port laparoscopic surgery or
7. Pini G, Porpiglia F, Micali S, Rassweiler J. Minilaparoscopy,
needlescopy and microlaparoscopy: Decreasing invasive-
ness, maintaining the standard laparoscopic approach. Arch
Bolis P. Minilaparoscopic versus conventional laparoscopic
hysterectomy: Results of a randomized trial. J Minim In-
PH. Randomized clinical trial of single-incision laparo-
sopic cholecystectomy versus minilaparoscopic cholecys-
F. Standard vs mini-laparoscopic pyeloplasty: Perioperative
outcomes and cosmetic results. BJU Int 2013;111(3 Pt B):
E121–E126.
weiler JJ. Small-incision access retroperitoneoscopic tech-
nique (SMART) pyeloplasty in adult patients: Comparison
of cosmetic and post-operative pain outcomes in a matched-
pair analysis with standard retroperitoneoscopy: Preliminary
12. Breda A, Villanizam JM, Fabra OB, Calilo C, de Gracia A,
Gausa L, de Leon JP, Villavicencio H. Laparoscopic live
donor nephrectomy with the use of 3-mm Instruments and
laparoscope: Initial experience at a tertiary center. Eur Urol
13. Kazazyan AM, Rasok BI, Edwin B. Morbidity assess-
ment in surgery: Refinement proposal based on a concept
of perioperative adverse events. ISRN Surg 2013;2013:
625093.
14. Dindo D, Demartines N, Clavien PA. Classification of
surgical complications: A new proposal with evaluation in
a cohort of 6336 patients and results of a survey. Ann Surg
15. Carvalho GL, Loureiro MP, Bonin E. Renaisissance of
Minilaparoscopy in the NOTES and single port era. JSLS
16. Soble JI, Gill IS. Needlescopic urology: Incorporating 2-mm
instruments in laparoscopic surgery. Urology 1998;52:
17. Krpata DM, Ponsky TA. Needlescopic surgery: What’s in
laparoendoscopic single-site surgery and natural orifice
transluminal endoscopic surgery-assisted laparoscopy: No-
vice surgeons’ performance and perception in a porcine
19. Pini G, Rassweiler J. Minilaparoscopy and laparoendos-
copic single-site surgery: Mini- and single-scar in urology.
and simplified terminology of natural orifice transluminal
endoscopic surgery (NOTES), laparoendoscopic single-site
surgery (LESS), and mini-laparoscopy (ML). World J Urol
Urol 2007;177:580.
22. Autorino R, Kaouk JH, Yakoubi R, et al. Urological la-
paroendoscopic single site surgery: Multi-institutional
analysis of risk factors for conversion and postoperative
N, Peters CA, Stein RJ, Gettmann M. Robot-assisted and
65:430–452.
C, Landman J. Contemporary experience with laparoscopic
radical nephrectomy. J Laparoendosc Adv Surg Tech A
nara P. Transperitoneal laparoscopic adrenalectomy: Out-
line of the preoperative management, surgical approach,

Address correspondence to:
Riccardo Autorino, MD, PhD, FEBU
Center for Laparoscopic and Robotic Surgery
Glickman Urological and Kidney Institute
Cleveland Clinic
9500 Euclid Avenue/Q-10
Cleveland, OH 44195

E-mail: autorir@ccf.org; ricautor@gmail.com

Abbreviations Used
ASA = American Society of Anesthesiologists
BMI = body mass index
EBL = estimated blood loss
LESS = laparoendoscopic single-site surgery
LOS = length of stay
ML = minilaparoscopy
NOTES = natural orifice translumenal endoscopic surgery
NSLC = nonsmall-cell lung cancer
ORT = operative room time
PCa GS =
SD = standard deviation
UTI =
VAS =
AUTHOR QUERY FOR END-2014-0134-VER9-PORPIGLIA_1P

AU1: Please note that gene symbols in any article should be formatted as per the gene nomenclature. Thus, please make sure that gene symbols, if present in this article, are italicized.

AU2: Please review all authors’ surnames for accurate indexing citations.

AU3: Please mention the authors’ degrees.

AU4: Please confirm the correctness of authors’ affiliations.

AU5: Please fix the expansion of the acronym VAS: “visual analog pain score” or “visual analog score at discharge”? 

AU6: Gurusamy and colleagues do not match with Ref. (20). Please check.

AU7: Ref. 19 has been deleted as it was a duplicate of Ref. 9, and Ref. citations in the text have been renumbered accordingly. Please check.

AU8: Please define PCa GS and UTI.